
CS 61B Discussion 11 Spring 2016

A

B

C

D

E

F G

1 Graph Representations
Write the graph above as an adjacency matrix, then as an adjacency list.
Matrix:

A B C D E F G <- end node
A 0 1 0 1 0 0 0
B 0 0 1 0 0 0 0
C 0 0 0 0 0 1 0
D 0 1 0 0 1 1 0
E 0 0 0 0 0 1 0
F 0 0 0 0 0 0 0
G 0 0 0 0 0 1 0
^ start node

List:

A: {B, D}
B: {C}
C: {F}
D: {B, E, F}
E: {F}
F: {}
G: {F}

2 DFS and BFS
Give the DFS preorder, DFS postorder, and BFS order of the graph starting from vertex A. Break
ties alphabetically.
DFS preorder: ABCFDE
DFS postorder: FCBEDA
BFS: ABDCEF

3 Topological Sorting
Give a valid topological sort of the graph above. (Hint: Use the reverse postorder.)

CS 61B, Spring 2016, Discussion 11 1



One valid topological sort is GADEBCF. There are many others. In particular,
G can go anywhere except after F, since it has no incoming edges and only
one outgoing edge (to F).

4 Graph Algorithm Design: Bipartite Graphs
An undirected graph is said to be bipartite if all of its vertices can be divided into two disjoint sets
U and V such that every edge connects an item in U to an item in V . For example, the graph on
the left is bipartite, whereas on the graph on the left is not. Provide an algorithm which determines
whether or not a graph is bipartite. What is the runtime of your algorithm?

To solve this problem, we simply run a special version of DFS or BFS from any
vertex. This special version marks the start vertex with a U, then each
of its children with a V, and each of their children with a U, and so
forth. If any vertex already has a U and the visited vertex has a V (or
vice-versa), then the graph is not bipartite.

If the graph is not connected, we repeat this process for each connected
component.

If the algorithm completes, marking every vertex in the graph, then it is
bipartite.

5 Extra for Experts: Shortest Directed Cycles
Provide an algorithm that finds the shortest directed cycle in a graph in O(EV ) time and O(E)
space, assuming E >V .
The key realization here is that the shortest directed cycle involving a

particular source vertex is just some shortest path plus one edge back to
s. Using this knowledge, we can create a shortestCycleFromSource(s)
subroutine. This subroutine first runs BFS on s, then checks every edge
in the graph to see if it points at s. For each such edge originating at
vertex v, it computes the cycle length by adding one to distTo(x) (which
was computed by BFS).

This subroutine takes O(E +V ) time because it is BFS. To find the shortest
cycle in the entire graph, we simply call shortestCycleFromSource() for
each vertex, resulting in an V ∗O(E +V ) = O(EV +V 2) runtime. Since E >V,
this is just O(EV ).

6 Extra for Experts: DFS Gone Wrong
Consider the following implementation of DFS, which contains a crucial error:

CS 61B, Spring 2016, Discussion 11 2



create the fringe, which is an empty Stack
push the start vertex onto the fringe and mark it
while the fringe is not empty:

pop a vertex off the fringe and visit it
for each neighbor of the vertex:

if neighbor not marked:
push neighbor onto the fringe
mark neighbor

Give an example of a graph where this algorithm may not traverse in DFS order.

CS 61B, Spring 2016, Discussion 11 3


