
CS 61B Discussion 13 Spring 2016
1 Quicksort

(a) Sort the following unordered list using in-place quicksort. Assume that the pivot you use is
always the first element and that we use the 3-way merge partitioning process described in
lecture and lab last week. Show the steps taken at each partitioning step.
18, 7, 22, 34, 99, 18, 11, 4

(b) What is the worst case running time of quicksort? Give an example of a list that meets this
worst case running time.

(c) What is the best case running time of quicksort? Briefly justify why you can’t do any better
than this best case running time.

(d) What are two techniques that can be used to reduce the probability of quicksort taking the
worst case running time?

CS 61B, Spring 2016, Discussion 13 1



2 Comparing Sorting Algorithms
When choosing an appropriate algorithm, there are often several tradeoffs that we have to con-
sider. For the following sorting algorithms, give the expected space complexity, time complexity,
and whether or not each sort is stable. As a reminder, a stable sorting algorithm is one that pre-
serves the order of two items with equal values after sorting.

Time Complexity Space Complexity Stable?
Insertion Sort

Heapsort
Mergesort
Quicksort

(a) For each unstable sort, give an example of a list where the order of equivalent items is not
preserved.

(b) In general, what are some other tradeoffs we might want to consider when designing an
algorithm?

3 Bounding Practice
Given an array, the heapification operation permutes the elements of the array into a heap. There
are many solutions to the heapification problem. One approach is bottom-up heapification, which
treats the existing array as a heap and rearranges all nodes from the bottom up to satisfy the heap
invariant. Another is top-down heapification, which starts with an empty heap and inserts all
elements into it.

(a) Why can we say that any solution for heapification requires Ω(n) time?

(b) Give the worst-case runtime for top-down heapification in Θ(·) notation. Why does this
mean that the optimal solution for heapification takes O(n logn) time?

(c) Matthew’s Mathematical Magic for Moguls: Show that the running time of bottom-up
heapify is Θ(n). Is bottom-up heapification asymptotically optimal?

CS 61B, Spring 2016, Discussion 13 2


