
CS 61B Discussion 5 Spring 2016
1 Assorted ADTs
Below are some sketches of ADTs (not real Java code). It’s not important to understand the details
of how these work right now; just try to understand how each one can be used conceptually.
List {

insert(item, position); // inserts item into the list at the position
get(position); // returns the item in the list at the position
size(); // returns the number of items in the list

}

Set {
add(item); // puts item in the set. Does not add duplicates
contains(item); // returns whether or not the item is in the set
items(); // returns a List of all items in some arbitrary order

}

Stack {
push(item); // puts item onto the stack
pop(); // removes and returns the most recently put item
isEmpty(); // returns whether the stack is empty

}

Queue {
enqueue(item); // puts item into the queue
dequeue(); // removes and returns the least recently put item
isEmpty(); // returns whether the queue is empty

}

PriorityQueue {
enqueue(item, priority); // puts item into the queue with a priority
dequeue(); // removes and returns the item with highest priority
peek(); // returns but does not remove the item with highest priority

}

Map { // like a dictionary from python
put(key, value); /* puts key into the map and associates it with the

given value. If key is already in the map, replaces
its existing value with the given value */

get(key); // returns value associated with key
keys(); // returns a List of all keys in some arbitrary order

}

CS 61B, Spring 2016, Discussion 5 1



2 Solving Problems with ADTs
Consider the problems below. Which of the ADTs given in the previous section might you use
to solve each problem? Although in principle any of the ADTs might be used to solve any of the
problems, think about which ones will make code implementation easier or more efficient.

1. Given a news article, find the frequency of each word used in the article.

2. Given an unsorted array of integers, return the array sorted from least to greatest.

3. Implement the forward and back buttons for a web browser.

3 More Complicated ADTs
The first page introduced you to some basic ADTs; you can find implementations of these in Java’s
standard library. But if we want something more complicated, we’ll have to build it ourselves.

1. Suppose we want an ADT called BiDividerMap with the following functionality (assume
K is something Comparable):

put(K, V); // put a key, value pair
getByKey(K); // get the value corresponding to a key
getByValue(V); // get the key corresponding to a value
numLessThan(K); // return number of keys in the map less than K

Describe how you could implement this ADT building off the ADTs given on the first page.
Do not write code. Then, suppose you decide you want numLessThan(K) to run really
fast. Can you think of any ways to improve your implementation to account for this?

2. Next, Suppose we would like to invent a new ADT called MedianFinder which supports
the following operations:

add(int x); // add the integer into the collection
getMedian(); // returns the median integer in the collection

Again, describe how you could implement this ADT building off of the ADTs from the first
page.

Auxiliary for Adepts: Ensure that add(int x) and getMedian() each use a number
of method calls independent of the items in the MedianFinder object.

CS 61B, Spring 2016, Discussion 5 2



4 ADTing in Circles
You want to solve a problem using a queue, but unfortunately, you only have access to a class that
is a stack. You decide to implement the queue ADT just using stacks. Complete the following
class, assuming that you have access to a class called Stack which implements the stack ADT.
Hint: Consider using two stacks.
public class SQueue{

// add any instance variables you like

public SQueue(){
// add any code to the constructor you like

}

public void enqueue(int item){
// your code here

}

public int dequeue(){
// your code here

}
}

Auxiliary for Adepts: Can you do it with only one stack? Especially Extra: Are you really
getting away with using only one stack?

CS 61B, Spring 2016, Discussion 5 3


