
CS 61B Discussion 8 Spring 2016
1 Which is faster?
For each example below, there are two algorithms solving the same problem. Given the asymptotic
runtimes for each, is one of the algorithms guaranteed to be faster? If so, which? And if neither
is always faster, explain why. Assume the algorithms have very large input (so N is very large).

A. Algorithm 1: Θ(N), Algorithm 2: Θ(N2)
Algorithm 1: Θ(N) - straight forward, Θ gives tightest bounds.

Algorithm 1: Ω(N), Algorithm 2: Ω(N2)
Neither, something in Ω(N) could also be in Ω(N2)

Algorithm 1: O(N), Algorithm 2: O(N2)
Neither, something in O(N2) could also be in O(1)

Algorithm 1: Θ(N2), Algorithm 2: O(logN)
Algorithm 2: O(logN) - Algorithm 2 cannot run SLOWER than O(logN) while

Algorithm 1 is constrained on best and worst case by Θ(N2).

Algorithm 1: O(N logN), Algorithm 2: Ω(N logN)
Neither, Algorithm 1 CAN be faster, but is not guaranteed - it is

guaranteed to be "as fast as or faster" than Algorithm 2.

Would your answers above change if we did not assume that N was very large?
Technically, no. But asymptotics are only applicable when considering

behavior as N gets large. Consider this example: N2 is asymptotically
larger than 10000N, yet when N is less than 10000, 10000N is larger

than N2.

2 More Runtime Analyzing
A. How many times is lobsterPainting called? Give your answer in Θ notation in terms of
N, assuming lobsterPainting does not crash or call any methods.

1 for (int i = 1; i < N/2; i++) {
2 for (int j = i - 1; j < N/2 + 1; j++) {
3 lobsterPainting(i, j);
4 }
5 }

Θ(N2) - First run of inner loop is N
2 , next is N

2 −1, etc. This goes N
2

times, which makes it Θ((N
2 )

2), so asymptotically, it is Θ(N2)

B. How about here?
1 for (int i = N - 1; i > 0; i /= 2) {
2 for (int j = 0; j < i; j++) {
3 lobsterPainting(i, j);
4 }
5 }

Θ(N) - If you add the numbers up (ignoring the -1 because it does not
matter), it is N + N/2 + N/4 + ... which is less than 2N.

They have seen this example in lecture except it went i∗= 2 instead of

CS 61B, Spring 2016, Discussion 8 1



i/= 2. Even though outer loop looks logN, because the number of times
the inner one changes, it is linear rather than anything else

C. Bonus: And here?
1 public static void crabDrawing(int N) {
2 for (int i = 1; i < N; i *= 2) {
3 lobsterPainting(i, i);
4 crabDrawing(i);
5 }
6 }

Θ(N) - This one is a little funky, it is actually Θ(2logx N) where x is how
you scale i (so x = 2 in this case because i∗= 2). Explanation:

First, observe that you make a call for each power of 2 less than N
The i-th recursive call in turn makes calls for each power of 2 less than

i
Starting with the base case of N = 1, there is 1 lobster

The next call (21) has 1 + 1 = 2 lobsters

The next call (22) has lobsters equal to ((lobsters for N = 1) + (lobsters
for N = 2) + 1) = 4

And so forth, the i-th call (with N = 2i) has 2i lobsters. (You can show
this by induction)

The solution becomes ∑
b(clog2N)
i=0 2i which asymptotically is 2log2N = N

3 More? Of Course More
Describe the best-case and worst-case runtimes of the function individually using Θ. Then use
them to describe the overall runtime of the function in terms of Θ (if possible) or O/Ω if not.

A. Assume arr is a sorted array of unique elements of size N. Example of calling this method
would be: hopps(sortedArr, 0, sortedArr.length).

Best case Θ(1) (Big-Omega)
Worst case Θ(logN) (Big-O)

1 public static int hopps(int[] arr, int low, int high) {
2 if (high <= low)
3 return -1;
4 int mid = (low + high) / 2; // (later, see http://goo.gl/gQI0FN )
5 if (arr[mid] == mid)
6 return mid;
7 else if (mid > arr[mid])
8 return hopps(arr, mid + 1, high);
9 else

10 return hopps(arr, low, mid);
11 }

Bonus: What is hopps doing?
Finding if there is an element in arr such that arr[i] = i and returning

it. If there is no such element, then it returns -1.

B. Assume str is a String of characters of size N.
Θ(N) all around (best and worst)
The second for loop may end early, but the first always runs for N

iterations.

CS 61B, Spring 2016, Discussion 8 2



1 public static char wilde(String str) {
2 Map<Character,Integer> map = new HashMap<>();
3 for (char c : str.toCharArray()) {
4 if (map.containsKey(c)) {
5 map.put(c, map.get(c) + 1);
6 } else {
7 map.put(c, 1);
8 }
9 }

10 for (int i = 0; i < str.length(); i++) {
11 if (map.get(str.charAt(i)) == 1) {
12 return str.charAt(i);
13 }
14 }
15 return 0; // 0 represents the NULL character
16 }

Bonus: What is wilde doing?
Finds the first unique char in str and returns it. If there is no such

unique char, return 0.

Bonus’s Bonus: Can you do it with only 1 for loop?
Use 2 data structures instead of 1, using one to store all the elements

that have had only 1 occurrence so far and another to store all the
characters we have seen that have duplicates:

Set<Character> repeats = new HashSet<>();
List<Character> uniques = new ArrayList<>();
for (int i = 0; i < str.length(); i++) {

char chara = str.charAt(i);
if (repeats.contains(chara)) {

continue;
}
if (uniques.contains(chara)) {

uniques.remove((Character) chara);
repeats.add(chara);

} else {
uniques.add(chara);

}
}
return uniques.get(0);

NOTE: This algorithm is NOT linear time - removing from the ArrayList

takes N time, so this algorithm is actually Θ(N2)

CS 61B, Spring 2016, Discussion 8 3



4 Have You Ever Went Faster? (Extra)
Given an integer x and a sorted array A[] of N distinct integers, design an algorithm to find if there
exists distinct indices i, j, and k such that A[i] + A[j] + A[k] == x. Feel free to write
pseudocode instead of Java. Your code should run in Θ(N2) time.
public static boolean sum3(int[] arr, int x) {

for(int i = 0; i < arr.length; i++) {
int j = i+1;
int k = arr.length-1;
while(j < k) {

int sum = arr[i] + arr[j] + arr[k];
if(sum == x) {

return true;
} else if(sum < x) {

j++;
} else if(sum > x) {

k--;
}

}
}
return false;

}

CS 61B, Spring 2016, Discussion 8 4


