1 Which is faster?

For each example below, there are two algorithms solving the same problem. Given the asymptotic runtimes for each, is one of the algorithms guaranteed to be faster? If so, which? And if neither is always faster, explain why. Assume the algorithms have very large input (so N is very large).
A. Algorithm 1: $\Theta(N)$, Algorithm 2: $\Theta\left(N^{2}\right)$

Algorithm 1: $\Theta(N)$ - straight forward, Θ gives tightest bounds.
Algorithm 1: $\Omega(N)$, Algorithm 2: $\Omega\left(N^{2}\right)$
Neither, something in $\Omega(N)$ could also be in $\Omega\left(N^{2}\right)$
Algorithm 1: $O(N)$, Algorithm 2: $O\left(N^{2}\right)$
Neither, something in $O\left(N^{2}\right)$ could also be in $O(1)$
Algorithm 1: $\Theta\left(N^{2}\right)$, Algorithm 2: $O(\log N)$
Algorithm 2: $O(\log N)$ - Algorithm 2 cannot run SLOWER than $O(\log N)$ while Algorithm 1 is constrained on best and worst case by $\Theta\left(N^{2}\right)$.
Algorithm 1: $O(N \log N)$, Algorithm 2: $\Omega(N \log N)$
Neither, Algorithm 1 CAN be faster, but is not guaranteed - it is guaranteed to be "as fast as or faster" than Algorithm 2.

Would your answers above change if we did not assume that N was very large?
Technically, no. But asymptotics are only applicable when considering behavior as N gets large. Consider this example: N^{2} is asymptotically larger than $10000 N$, yet when N is less than $10000,10000 N$ is larger than N^{2}.

2 More Runtime Analyzing

A. How many times is lobsterPainting called? Give your answer in Θ notation in terms of N, assuming lobsterPainting does not crash or call any methods.

```
for (int i = 1; i < N/2; i++) {
    for (int j = i - 1; j < N/2 + 1; j++) {
        lobsterPainting(i, j);
    }
}
    \Theta(N}\mp@subsup{N}{}{2})\mathrm{ - First run of inner loop is }\frac{N}{2}\mathrm{ , next is }\frac{N}{2}-1\mathrm{ , etc. This goes }\frac{N}{2
        times, which makes it \Theta((\frac{N}{2}\mp@subsup{)}{}{2})\mathrm{ , so asymptotically, it is }\Theta(\mp@subsup{N}{}{2})
```

B. How about here?

```
for (int i = N - 1; i > 0; i /= 2) {
    for (int j = 0; j < i; j++) {
        lobsterPainting(i, j);
    }
}
    \Theta(N) - If you add the numbers up (ignoring the -1 because it does not
        matter), it is N + N/2 + N/4 + ... which is less than 2N.
    They have seen this example in lecture except it went i*=2 instead of
```

```
i/=2. Even though outer loop looks }\operatorname{log}N\mathrm{ , because the number of times
the inner one changes, it is linear rather than anything else
```

C. Bonus: And here?

```
public static void crabDrawing(int N) {
    for (int i = 1; i < N; i *= 2) {
        lobsterPainting(i, i);
        crabDrawing(i);
    }
}
```

```
    \Theta(N) - This one is a little funky, it is actually \Theta (2 (\mp@subsup{\operatorname{log}}{x}{}N})\mathrm{ where x is how
```

 \Theta(N) - This one is a little funky, it is actually \Theta (2 (\mp@subsup{\operatorname{log}}{x}{}N})\mathrm{ where x is how
 you scale i (so x=2 in this case because i*=2). Explanation:
 you scale i (so x=2 in this case because i*=2). Explanation:
 First, observe that you make a call for each power of 2 less than N
 First, observe that you make a call for each power of 2 less than N
 The i-th recursive call in turn makes calls for each power of 2 less than
 The i-th recursive call in turn makes calls for each power of 2 less than
 i
 i
 Starting with the base case of N=1, there is 1 lobster
 Starting with the base case of N=1, there is 1 lobster
 The next call (2 () has 1 + 1 = 2 lobsters
 The next call (2 () has 1 + 1 = 2 lobsters
 The next call (2) has lobsters equal to ((lobsters for N=1) + (lobsters
 The next call (2) has lobsters equal to ((lobsters for N=1) + (lobsters
 for N=2) + 1) = 4
 for N=2) + 1) = 4
 And so forth, the i-th call (with N=2 i}\mathrm{) has 2i lobsters. (You can show
 And so forth, the i-th call (with N=2 i}\mathrm{) has 2i lobsters. (You can show
 this by induction)
 this by induction)
 The solution becomes }\mp@subsup{\sum}{i=0}{\lfloor(J\mp@subsup{\operatorname{log}}{2}{}N)}\mp@subsup{2}{}{i}\mathrm{ which asymptotically is 2}\mp@subsup{2}{}{\mp@subsup{\operatorname{log}}{2}{}N}=
    ```
    The solution becomes }\mp@subsup{\sum}{i=0}{\lfloor(J\mp@subsup{\operatorname{log}}{2}{}N)}\mp@subsup{2}{}{i}\mathrm{ which asymptotically is 2}\mp@subsup{2}{}{\mp@subsup{\operatorname{log}}{2}{}N}=
```


3 More? Of Course More

Describe the best-case and worst-case runtimes of the function individually using Θ. Then use them to describe the overall runtime of the function in terms of Θ (if possible) or O / Ω if not.
A. Assume arr is a sorted array of unique elements of size N. Example of calling this method would be: hopps(sortedArr, 0, sortedArr.length).

Best case $\Theta(1)$ (Big-Omega)
Worst case $\Theta(\log N)$ (Big-O)

```
public static int hopps(int[] arr, int low, int high) {
    if (high <= low)
        return -1;
    int mid = (low + high) / 2; // (later, see http://goo.gl/gQIOFN )
    if (arr[mid] == mid)
        return mid;
    else if (mid > arr[mid])
        return hopps(arr, mid + 1, high);
    else
        return hopps(arr, low, mid);
}
```

Bonus: What is hopps doing?

```
Finding if there is an element in arr such that arr[i] = i and returning
        it. If there is no such element, then it returns -1.
```

B. Assume str is a String of characters of size N.

```
\Theta(N) all around (best and worst)
The second for loop may end early, but the first always runs for N
    iterations.
```

```
public static char wilde(String str) {
    Map<Character,Integer> map = new HashMap<> ();
    for (char c : str.toCharArray()) {
        if (map.containsKey(c)) {
            map.put(c, map.get(c) + 1);
        } else {
            map.put(c, 1);
        }
    }
    for (int i = 0; i < str.length(); i++) {
        if (map.get(str.charAt(i)) == 1) {
        return str.charAt(i);
        }
    }
    return 0; // O represents the NULL character
}
```

Bonus: What is wilde doing?

```
Finds the first unique char in str and returns it. If there is no such
    unique char, return 0.
```

Bonus's Bonus: Can you do it with only 1 for loop?

```
Use 2 data structures instead of 1, using one to store all the elements
    that have had only l occurrence so far and another to store all the
    characters we have seen that have duplicates:
Set<Character> repeats = new HashSet<>();
List<Character> uniques = new ArrayList<>();
for (int i = 0; i < str.length(); i++) {
    char chara = str.charAt(i);
    if (repeats.contains(chara)) {
        continue;
    }
    if (uniques.contains(chara)) {
        uniques.remove((Character) chara);
        repeats.add(chara);
        } else {
            uniques.add(chara);
        }
}
return uniques.get(0);
NOTE: This algorithm is NOT linear time - removing from the ArrayList
        takes N time, so this algorithm is actually \Theta(N N
```


4 Have You Ever Went Faster? (Extra)

Given an integer x and a sorted array A[] of N distinct integers, design an algorithm to find if there exists distinct indices i, j, and k such that $A[i]+A[j]+A[k]==x$. Feel free to write pseudocode instead of Java. Your code should run in $\Theta\left(N^{2}\right)$ time.

```
public static boolean sum3(int[] arr, int x) {
    for(int i = 0; i < arr.length; i++) {
        int j = i+1;
        int k = arr.length-1;
        while(j < k) {
            int sum = arr[i] + arr[j] + arr[k];
            if(sum == x) {
                return true;
            } else if(sum < x) {
                j++;
            } else if(sum > x) {
                k--;
            }
        }
    }
    return false;
```

