
CS 61B Discussion 9 Spring 2016
1 Fun with Hash Functions (from 61BL SU2014 MT2)
Here are three potential implementations of the Integer’s hashCode() function. Categorize
each as either a valid or an invalid hash function. If it is invalid, explain why. If it is valid, point
out a flaw/disadvantage.

Note: A "valid" hashCode() means that: any two Integers that are .equals() to each other
should also return the same hash code value.

Another note: the Integer class extends the Number class, a direct subclass of Object. The
Number class’ hashCode() method directly calls the Object class’ hashCode() method.

(a) public int hashCode() {return -1; }

Valid. As required, this hash function returns the same hashCode for
Integers that are .equals() to each other. However, this is a
terrible hash code because collisions are extremely frequent
(collisions occur 100\% of the time).

(b) public int hashCode() {return intValue() * intValue(); }

Valid. Similar to (a), this hash function returns the same hashCode
for Integers that are .equals(). However, Integers that share the
same absolute values will collide (for example, x=5 and x=-5 will
have the same hash code). A better hash function would be to just
return the intValue() itself.

(c) public int hashCode() {return super.hashCode(); }

Invalid. This is not a valid hash function because Integers that are
.equals() to each other will not have the same hash code. Instead,
this hash function returns some integer corresponding to the
Integer object’s location in memory.

2 HashMap Modification (from 61BL SU2010 MT2)
(a) When you modify a key that has been inserted into a HashMap will you be able to retrieve that

entry again? Explain.
� Always � Sometimes � Never

(b) When you modify a value that has been inserted into a HashMap will you be able to retrieve
that entry again? Explain.
� Always � Sometimes � Never

CS 61B, Spring 2016, Discussion 9 1

3 Analyzing Proj1 ArrayDeque’s Runtime
Recall the ArrayDeque from proj1. Our implementation uses a circular array with two pointers
denoting the front and back of the ArrayDeque. Starting with an initial size of 8, the array
doubles in size when it reaches full capacity, and halves in size when it’s load factor is lower
than 0.25. Resizing will reposition the elements to start from index 0 for ease of maintenance.
Fill in this table with best, worst, and average case runtimes of the ArrayDeque methods (in Θ

notation).

Best Case Worst Case Average Case
addFirst/Last Θ(1) Θ(N) Θ(1)
rmFirst/Last Θ(1) Θ(N) Θ(1)

get Θ(1) Θ(1) Θ(1)

4 Recursion and Dynamic Programming
Implement Fibonacci using memoization (memorizing previously solved problems).
public class Fibonacci {

HashMap<Integer, Integer> map = new HashMap<Integer, Integer>();

// For your reference, fib(0) = 0, fib(1) = 1, fib(2) = 1, ...
public int fib(int n) {

if (n == 0) {
return 0;

} else if (n == 1) {
return 1;

} else if (map.containsKey(n)) {
return map.get(n);

}

int result = fib(n - 2) + fib(n - 1);
map.put(n, result);
return result;

}
}

CS 61B, Spring 2016, Discussion 9 2

5 Hashing a Tic-Tac-Toe Board (Bonus)
Given the provided (minimal) implementations below, write the .hashCode() and .equals()
methods for the Piece and Board classes (we did Piece.equals() for you). Try to ensure
that different board configurations have different hash codes.
public class Piece {

private String type; // Will be either "X" or "O".

/** Some other code... */

public boolean equals(Object o) {
Piece otherPiece = (Piece) o;
return this.type.equals(otherPiece.type);

}

public int hashCode() {
if (type.equals("X")) {

return 2;
} else if (type.equals("O")) {

return 1;
}
return 0;

}
}

public class Board {
public static final int SIZE = 3; // Tic Tac Toe Boards are always 3x3

private Piece[][] pieces;
private boolean isXTurn;

/** Some other code... */

public int hashCode() {
int code = 0;
if (isXTurn) {

code = 1;
}

for (int i = 0; i < SIZE; i++) {
for (int j = 0; j < SIZE; j++) {

Piece currentPiece = pieces[i][j];
code *= 3;
if (currentPiece != null) {

code += currentPiece.hashCode();
}

}
}

return code;
}

}

CS 61B, Spring 2016, Discussion 9 3

Bite-sized Bonus: How do you implement the .equals() method for Board?
Take a [double] for loop through the pieces array and ensure that at every

spot, either they are both nulls, both X’s, or both O’s. We didn’t leave
space in the above code because we tried to keep everything on one page...

Bigger Bonus: Is it possible to perform a "perfect hash"? If we now wanted to have three different
types of pieces, X’s, O’s and Triangles, does that change your answer?
Yes, there are a combined 2×39 possible configurations, which can be uniquely

represented using the hash code. To include a new type of piece, use
powers of 4 to represent the possible pieces in each board location.

CS 61B, Spring 2016, Discussion 9 4

