
CS61B Spring 2016 Guerrilla Section 1b Worksheet

SOLUTIONS

Akhil Batra, Leo Colobong, Nick Fong, Laura Harker, Anusha Ramakuri, Giulio Zhou,
Daniel Socher, Mitas Ray, Kuriakose Sony Theakanath, Dasheng Chen,

Jimmy Lee, Bhuvana Bellala, Matthew Mussomele, Andy Zhang

7 February 2016

Directions: In groups of 4-5, work on the following exercises. Do not proceed to the next exercise until
everyone in your group has the answer and understands why the answer is what it is. Of course, a topic
appearing on this worksheet does not imply that the topic will appear on the midterm, nor does a topic not
appearing on this worksheet imply that the topic will not appear on the midterm.

1 ALists

Here’s an incomplete implementation of the AList class.

1. Implement the delete(int index) method, which deletes the array element at index i and shifts the
remaining elements of the array up. You may assume that i is between 0 and size - 1, inclusive. If
delete causes the load on items to be less than .25 (that is, if items becomes less than a quarter full),
resize items to be half its current capacity.

2. Write the integer that would be printed on the line next to the System.out.println(...) methods
in the main method.

1 public c lass AList {

2 public int size;

3 public int [] items;

4

5 public AList() {

6 size = 0;

7 items = new int [2];
8 }

9

10 /∗∗ Capacity doubles whenever the size exceeds the capacity. ∗/
11 public void insertBack(int x) { }

12

13 public int getBack () { }

14

15 public int deleteBack () { }

16

17 public int get(int index) { }

18

19 public int capacity () {

20 return items.length;

21 }

22

23 /∗∗ This will be used by insertBack(int x), deleteBack() and delete(). ∗/
24 public void resize(int newCapacity) { }

1

CS61B Guerrilla Section 1b Worksheet SOLUTIONS

25

26 public int delete(int index) {

27 /∗ Your implementation. ∗/
28 i f (index == size - 1) {

29 return deleteBack ();

30 } else {

31 int item = items[index];

32 for (int i = index; i < size - 1; i++) {

33 items[index] = items[index + 1];

34 }

35

36 size = size - 1;

37 i f (size < capacity () / 4) {

38 resize(capacity () / 2);

39 }

40 return item;

41 }

42 }

43

44 public void main(String [] args) {

45 AList alist = new AList ();

46 for (int i = 0; i < 5; i++) {

47 alist.insertBack(i);

48 }

49 System.out.println(alist.size); __5__

50 System.out.println(alist.capacity ()); __8__

51 alist.deleteBack ();

52 alist.deleteBack ();

53 System.out.println(alist.capacity ()); __8__

54 alist.deleteBack ();

55 alist.deleteBack ();

56 System.out.println(alist.size); __1__

57 System.out.println(alist.capacity ()); __4__

58 }

59 }

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!

Spring 2016 2

CS61B Guerrilla Section 1b Worksheet SOLUTIONS

2 ADT Selection

Suppose we’d like to implement the SortedList interface. It’s API looks like this:

1 public interface SortedList {

2 /∗ Initialize a SortedList with one element. ∗/
3 public SortedList(int elem);

4

5 /∗ Get the element at index i. ∗/
6 public int get(int i);

7

8 /∗ Merge this list with other. Postcondition: this SortedList must remain in
sorted order ∗/

9 public void merge(SortedList other);

10 }

1. Suppose we’d like to perform merge operations between lists using only a constant amount of additional
memory. Should SortedList be implemented using an internal linked list or an internal array?
Linked list. This would allow us to easily insert elements to a list during the merging process, by
setting pointers between the nodes.

2. Now suppose we’d like to optimize the speed of our SortedList data stucture’s get operations. Again,
select an internal data structure (array or linked list) for SortedList.
Array. With an array as the internal data structure, the get method can be implemented in constant
time.

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!

Spring 2016 3

CS61B Guerrilla Section 1b Worksheet SOLUTIONS

3 OOP

1 abstract c lass Abstraction {

2 abstract void foo();

3 }

4

5 c lass Bar {

6 void foo() {

7 System.out.println("Berkeley!");

8 }

9 }

10

11 public c lass AbstractExample {

12 public stat ic void callFoo(Abstraction widget) {

13 widget.foo();

14 }

15

16 public stat ic void main (String [] args) {

17 Object theBar = new Bar();

18 callFoo ((Abstraction) theBar);

19 }

20 }

For the code above, answer the following questions:

1. Does this code compile? If not, what’s the compile-time error?
The code compiles.

2. Does this code run? If not, what’s the run-time error?
The code does not run. ClassCastException – Bar can?t be casted to Abstraction because an object
of class Bar is not a subclass of Abstraction, despite having the same methods

3. If this code does not compile/run, what is the minimum change needed to print ”Berkeley!”?
Change line 5 to read class ”Bar extends Abstraction{”

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!

Spring 2016 4

CS61B Guerrilla Section 1b Worksheet SOLUTIONS

4 What would Java Print?

Consider the following classes. What is the output after running the main method in the Monster class?

1 c lass Ghoul extends Monster {

2 public Ghoul() {

3 System.out.println("I am a ghoul.");

4 }

5

6 public void spook() {

7 System.out.println("I’m so ghoul: " + noise);

8 System.out.println("I am " + spookFactor + " spooky.");

9 }

10

11 public stat ic void mash(Ghoul g) {

12 System.out.println("boogity boo: ");

13 g.spook();

14 //spook();
15 }

16

17 public void haunt() {

18 System.out.println("ERRERERRRRERRR");

19 mash(this);
20 }

21 }

22

23 public c lass Monster {

24 protected String noise = "blargh";

25 public stat ic int spookFactor = 5;

26

27 public Monster () {

28 System.out.println("Muhahaha !!!");

29 }

30

31 public void spook() {

32 System.out.println("I go " + noise);

33 System.out.println("I am " + spookFactor + " spooky.");

34 }

35

36 public stat ic void mash(Monster m) {

37 System.out.println("Monster: ");

38 m.spook();

39 }

40

41 public stat ic void main(String [] args) {

42 // part a
43 System.out.println("Part a:");

44 Monster m = new Monster ();

45 m.mash(m);

46

47 System.out.println("Part b:");

48 Monster g = new Ghoul();

49 g.mash(g);

50

51 System.out.println("Part c:");

52

53 g.spookFactor = 10;

54 m.mash(m);

55

Spring 2016 5

CS61B Guerrilla Section 1b Worksheet SOLUTIONS

56 System.out.println("Part d:");

57

58 Ghoul ghastly = new Ghoul();

59 m = ghastly;

60 ghastly = (Ghoul) m;

61 ghastly.haunt();

62 m.mash(ghastly);

63 }

64 }

Part a:
Muhahaha!!!
Monster:
I go blargh
I am 5 spooky.
Part b:
Muhahaha!!!
I am a ghoul.
Monster:
I’m so ghoul: blargh
I am 5 spooky.
Part c:
Monster:
I go blargh
I am 10 spooky.
Part d:
Muhahaha!!!
I am a ghoul.
ERRERERRRRERRR
boogity boo:
I’m so ghoul: blargh
I am 10 spooky.
Monster:
I’m so ghoul: blargh
I am 10 spooky.

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!

Spring 2016 6

CS61B Guerrilla Section 1b Worksheet SOLUTIONS

5 Vehicle Interfaces

Henry Hacker wrote up two Vehicle classes Car and Plane. He notices that most if not all Vehicles will need
to check their lights and gas for a maintainence report. He also wants to enforce having all Vehicles be able
to check lights and gas as well as provide a maintainence report. Below, write an interface for Vehicle

1 public interface Vehicle {

2 public void checkGas ();

3 public void checkLights ();

4 default public void reportMaintainence () {

5 checkGas ();

6 checkLight ();

7 }

8 }

9

10 public c lass Car implements Vehicle{

11 private int gas;

12 private boolean lightsWork;

13 public void honk() {

14 System.out.println("Honk!");

15 }

16 public void checkLights () {

17 i f (! lightsWork) {

18 System.out.println("Lights are broken.");

19 }

20 }

21 public void checkGas () {

22 i f (gas < 3) {

23 System.out.println("Need more gas.");

24 }

25 }

26 public void reportMaintenence () {

27 checkGas ();

28 checkLight ();

29 }

30 }

31 public c lass Plane implements Vehicle {

32 private int gas;

33 private int battery;

34 public void checkGas () {

35 i f (gas < 1000) {

36 System.out.println("Should refuel before flying.");

37 }

38 }

39 public void checkLights () {

40 i f (battery < 10) {

41 System.out.println("Should replace battery for lights.");

42 }

43 }

44 public void reportMaintenence () {

45 checkGas ();

46 checkLight ();

47 }

48 }

Spring 2016 7

CS61B Guerrilla Section 1b Worksheet SOLUTIONS

6 Inheritance Bonus

(From Fall 2014, Midterm 1.)
Fill in the blanks and cross out and rewrite lines of code in the Animal and Dog classes so that Foo.java
compiles and prints out the following lines:
1

2

3

Superdog

Superdog

bark 3

4

Do not cross out a line and replace it with multiple lines (i.e. just rewrite the line you cross out). Do
not add new lines of code anywhere except the blanks provided. Do not modify Foo. Do not modify any
lines that say ”do not modify”

1 import zoo.Animal;

2 import housepets.Dog;

3 public c lass Foo { // Do not modify class Foo
4

5 public stat ic void main(String [] args) {

6 Animal a = new Dog();

7 Animal b = new Dog();

8 Animal c = new Dog();

9 a.makeNoise ();

10 b.makeNoise ();

11 a.makeNoise ();

12 c.sayName ();

13 a.sayName ();

14 a.makeNoise("bark");

15 c.makeNoise ();

16 }

17 }

1 package zoo;

2 public c lass Animal {

3

4 protected stat ic int noise; // CHANGED FROM int noise;
5 private String name; // Do not modify this line
6

7 public Animal(String name) {

8 this .name = name; // CHANGED FROM name = name;
9 }

10

11 public void makeNoise () {

12 noise += 1;

13 System.out.println(noise);

14 }

15

16 public void sayName () {

17 System.out.println(name);

18 }

19

20 public void makeNoise(String sound){}

21 }

Spring 2016 8

CS61B Guerrilla Section 1b Worksheet SOLUTIONS

1 package housepets;

2 import zoo.Animal;

3 public c lass Dog extends Animal { // CHANGED FROM public class Dog {
4

5 public Dog() {

6 super("Superdog");
7 }

8

9 public void makeNoise(String sound) {

10 System.out.println(sound + " " + noise);

11 }

12 }

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!

Spring 2016 9

CS61B Guerrilla Section 1b Worksheet SOLUTIONS

7 Abstract classes

1. What are advantages and disadvantages of abstract classes and interfaces?
Abstract classes allow you create a partially defined class with abstract methods – you can define some
methods, while leaving abstract methods as method headers for subclasses to implement. Interfaces
only allow method headers to be defined, without implementation. However, abstract classes cannot
be instantiated, because they may contain unimplemented methods.
EDIT: Interfaces now have default methods. Additionally, a class can implement multiple interfaces
but only extend one abstract class.

2. Consider this school class:

1 public c lass School {

2 String name;

3 int numStudents;

4

5 public void cheer() {

6 System.out.println("I have no idea what to say.");

7 }

8

9 public void enrollStudent () {

10 numStudents += 1;

11 i f (numStudents % 1000 == 0) {

12 System.out.println("We have " + numStudents + " students!");

13 }

14 }

15

16 public void expelStudent () {

17 students -= 1;

18 }

19 }

Enrolling and expelling students makes sense but we don’t know what a School should do for its cheer.
We intend to make subclasses of schools that have their own special way of cheering. How should we
rewrite school? Mark changes on the prewritten class above.
Make the class abstract and change cheer method to abstract.

Spring 2016 10

CS61B Guerrilla Section 1b Worksheet SOLUTIONS

3. We want to create a University class so we can create school instances of different education levels.
Oski tried his best, but he didn’t take CS61B. University cheers should output the name followed by
a space and the motto. Also, Oski forgot that Universities congratulate students upon enrolling them.
In addition to doing what enroll currently does, the method should also print ”Congratulations!”. Fix
Oski’s University class so it compiles and follows University behaviors. (Try to add as few lines as
possible. Feel free to cross things out.)

1 public c lass University extends School {

2 String motto; // they should add this. but not add name.
3

4 public University(String name , String motto) {

5 this .name = name;

6 this .motto = motto;

7 }

8

9 public void String cheer() {

10 // change this to void and removed the return statement.
11 String chant = name + ’ ’ + motto;

12 System.out.println(chant);

13

14 }

15

16 public void enrollStudent () {

17 // Should ask students to go in this direction instead of copypasting
the original method

18 super.enrollStudent ();
19 System.out.println("Congratulations!")

20 }

21 }

4. Stanford thinks they are too cool for school. They wrote their own class following University guidelines.
But it’s quite unnecessary.

1 public c lass Stanfurd {

2 public void cheer() {

3 System.out.println("Stanfurd is 2cool4skool");

4 }

5

6 public void enrollStudent () {

7 numStudents += 1;

8 i f (numStudents % 1000 = 0) {

9 System.out.println("We have " + numStudents + " students!");

10 }

11 System.out.println("Congratulations!")

12 }

13

14 public void expelStudent () {

15 students -= 1;

16 }

17 }

Show how simple it is to create an School instance of Stanfurd with the same functionality.

School Stanfurd = new University ("Stanfurd", "is 2cool4skool");

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!

Spring 2016 11

CS61B Guerrilla Section 1b Worksheet SOLUTIONS

8 HOF

Use these two interfaces for the following problems.

1 public interface BinaryFunction {

2 public int apply(int x, int y);

3 }

4

5 public interface UnaryFunction {

6 public int apply(int x);

7 }

1. Implement the Adder class below, which should implement the BinaryFunction interface and add two
numbers together.

1 public c lass Adder implements BinaryFunction {

2 int apply(int x, int y) {

3 return x + y;

4 }

5 }

2. Implement the Add10 class. It should have a single method ?apply? that takes in a single integer x
and returns x + 10 without using any of the +-*/ operators.

1 public c lass Add10 implements UnaryFunction {

2

3 private stat ic f ina l Adder add = new Adder();

4

5 int apply(int x) {

6 return add.apply(x, 10);

7 }

8 }

3. Finish the implementation of the AddX0 class. It should take in an integer to its constructor and its
apply method should add 10 times that integer to whatever is passed in without using any of the +-*/
operators (except to increment indices in for/while loops).

1 public c lass AddX0 implements UnaryFunction {

2

3 private stat ic f ina l Add10 addTen = new Add10 ();

4 // not necessary to init here but recommended
5 private int tensPlace;

6

7 public AddX0(int num) {

8 tensPlace = num;

9 }

10

11 public int apply (int x) {

12 int result = x;

13 for (int i = 0; i < tensPlace; i++) {

14 result = addTen.apply(result);

15 }

16 }

17 }

4. Fill in the implementation of the Multiplier class below. Its apply method should take in two ints
(x and y) and return x * y without using any of the +-*/ operators (except to increment indices in
for/while loops). You may assume that all inputs are positive.

Spring 2016 12

CS61B Guerrilla Section 1b Worksheet SOLUTIONS

1 public c lass Multiplier implements BinaryFunction {

2

3 private stat ic f ina l Adder add = new Adder();

4 // not necessary to init here but recommended
5

6 public int apply(int x, int y) {

7 int result = 0;

8 for (int i = 0; i < y; i++) {

9 result = add.apply(result , x);

10 }

11 return result;

12 }

13 }

5. Bonus: Rewrite the apply method of the Multiplier class below to take negative inputs into account.
You still may not use the +-*/ operators, with the exception that you may use the unary version of
the - operator to negate numbers.

1 public int apply(int x, int y) {

2 i f (y < 0) {

3 return -apply(x, -y);

4 } else {

5 int result = 0;

6 for (int i = 0; i < y; i++) {

7 result = add.apply(result , x);

8 }

9 return result;

10 }

11 }

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!

Spring 2016 13

	ALists
	ADT Selection
	OOP
	What would Java Print?
	Vehicle Interfaces
	Inheritance Bonus
	Abstract classes
	HOF

