
CS61B Spring 2016 Guerrilla Section 6 Worksheet

5 May 2016

Directions: In groups of 4-5, work on the following exercises. Do not proceed to the next exercise until
everyone in your group has the answer and understands why the answer is what it is. Of course, a topic
appearing on this worksheet does not imply that the topic will appear on the exam, nor does a topic not
appearing on this worksheet imply that the topic will not appear on the midterm.

1 Pokemon Ice Cave Puzzle

You are Hash Ketchum. On your way to find the move tutor who can teach your Pikachu Mergesort, you
find yourself lost in an ice cave! You need to figure out how to navigate from your starting position to the
goal position with the fewest number of inputs. When you take a step (up, down, left, or right) you slide
in that direction until you hit a rock or wall. Since we move until we hit something, we can ignore the
intermediate steps between rocks/walls. Fill in the blank spaces below to find a sequence of moves to make
that will allow you to make it through the cave!
Note: Enums can be considered as a set of user defined constants, and can be compared with the ==
operator.

1



CS61B Guerrilla Section 6 Worksheet

// Represents an Ice Cave. Has a fixed height and width as well as a double array of Squares

// describing what fills the cave.

public abstract class IceCave {

Int height;

Int width;

Square[][] terrain;

public boolean inBounds(Pos p);

}

// Represents a square of area in the ice cave. You can travel over ice, but are stopped by rock.

// A square can be ice or rock, but never both.

public abstract class Square {

boolean isIce();

boolean isRock();

}

public class Position {

int x;

int y;

public boolean equals(Position p);

}

public enum Direction {

LEFT, UP, DOWN, RIGHT

}

// Given an ice cave, a position, and a direction, returns your new position after taking a step in

// that direction.

// Since we move until we hit something, we can ignore the intermediate steps between rocks/walls.

private static Position takeStep(Position pos, IceCave cave, Direction dir) {

}

Spring 2016 2



CS61B Guerrilla Section 6 Worksheet

// Given an ice cave, starting position, and goal position, returns a sequence of positions that will

// take you from the starting position to the goal position with the fewest inputs.

// Since we move until we hit something, we can ignore the intermediate steps between rocks/walls.

public static LinkedList<Position> findInputs(IceCave cave, Position startPos, Position goalPos) {

HashSet<Position> seen = new HashSet<Position>();

seen.add(startPos);

LinkedList<LinkedList<Position>> fringe = new LinkedList<LinkedList<Position>>();

LinkedList<Position> startList = new LinkedList<>();

startList.add(startPos);

fringe.add(startList);

while(fringe.size() > 0) {

}

return null;

}

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!

Spring 2016 3



CS61B Guerrilla Section 6 Worksheet

2 Data Structures Potpourri

For each of the following, give a data structure or algorithm that you could use to solve the problem or write
”impossible” if it is impossible to meet the running time given in the question. For each question, we have
one or more right answers in mind, all of which are among the data structures and algorithms listed below.
For each answer, provide a brief description of how the algorithm or data structure can be used to solve the
problem.
Possible answers:

DFS Heap Quick sort Impossible
BFS Trie Merge sort

Dijkstra’s Hash table Insertion sort
Topological Sort Balanced BST Radix sort

Kruskal’s Linked list Selection Sort

(a) Given a list of N words with k characters each, find for each word its longest prefix that is the prefix of
some other word in the list. Worst-case running time O(Nk) character comparisons.

(b) Given an undirected, weighted and connected graph with |E| edges, find the heaviest edge that can be
removed without disconnecting the graph. Worst-case running time: O(|E|log|E|).

(c) We would like to build a data structure that supports the following operations: add, remove and find
the kth largest element for any k. Worst-case running time: O(log(N)) comparisons for each operation
(where N is the number of elements currently in the data structure).

(d) Given an unordered list of N Comparables, construct a BST containing all of them. Running time:
O(N) comparisons.

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!

Spring 2016 4



CS61B Guerrilla Section 6 Worksheet

3 Hashing

The (unmemoized) hashCode method for the String class is as follows:

public int hashCode() {

int h = 0;

for (int i = 0; i < length() ; i++) {

h = 31 * h + charAt(i);

}

return h;

}

For parts (a) and (b), assume that a HashSet uses the value of this function by taking it modulo the number
of buckets, after first masking off the sign bit to make the number non-negative (The actual HashSet and
HashMap implementations do something more sophisticated.). The other parts of the problem are disjoint
from (a) and (b).

(a) Given a String of length L and a HashSet that contains N Strings, give the worst- and best-case running
times of inserting the String into the HashSet.

(b) In Java, HashSets always use arrays whose size is a power of two. If this were not the case, the hashCode
method shown above could be a very poor hash function. Give an example of an integer N such that
hashCode would be a very poor choice of hash function for a HashSet whose array had size N. Give
a brief explanation of your answer. Assume that the Java HashSet uses external chaining to resolve
collisions.

(c) What is a collision in a hash table? Select the best definition below.
• Two key-value pairs that have equal keys but different values.
• Two key-value pairs that have different keys and hash to different indices.
• Two key-value pairs that have different keys but hash to the same index.
• Two key-value pairs that have equal keys but hash to different indices.

(d) Suppose that your hash function does not satisfy the uniform hashing assumption. Which of the follow-
ing can result? Select all that apply. For each one selected, give a brief explanation of why it would
result.
• Poor performance for insert.
• Poor performance for search hit.
• Poor performance for search miss.

Spring 2016 5



CS61B Guerrilla Section 6 Worksheet

(e) Suppose that instead of using a linked list for our external chaining, we instead use another HashMap.
List some disadvantages of this approach.

(f) What if we don’t trust the user to write a good hashCode function for their objects? What improvements
could we make to try and mitigate this problem?

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!

Spring 2016 6



CS61B Guerrilla Section 6 Worksheet

4 Symmetric Tree

Complete the following program by filling in the blank line on this page and adding any necessary code to
the next page.

public interface Tree {

/** Return true iff I contain X. */

boolean contains(int x);

/** Insert X into me, if not already present, returning the result. */

Tree insert(int x);

/** The empty tree, containing nothing. [NOTE: static methods

* in interfaces is a Java 8 feature.] */

static Tree emptyTree() {

return ____________________________________;

}

}

public final class RegularTree implements Tree {

/* NOTE: Final classes cannot be extended. */

/** A Tree containing label LAB and the contents of trees L and R,

* where all elements of L are < LAB and those of R are > LAB. */

RegularTree(int lab, Tree L, Tree R) {

_label = lab; _left = L; _right = R;

}

@Override

public boolean contains(int x) {

if (x == label) { return true; }

else if (x < _label) { return _left.contains(x); }

else { return _right.contains(x); }

}

@Override

public Tree insert(int x) {

if (x < _label) {

_left = _left.insert(x);

} else if (x > _label) {

_right = _right.insert(x);

}

return this;

}

private int _label; private Tree _left, _right;

}

Continued on next page

Spring 2016 7



CS61B Guerrilla Section 6 Worksheet

Add any additional code here. It may not contain any if statements, while statements, switch statements,
conditional expressions, or try statements.

// FILL IN, IF NEEDED.

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!

Spring 2016 8



CS61B Guerrilla Section 6 Worksheet

5 Merging 2 Lists Iterator

Given 2 sorted arrays (all elements are integers), return an iterator that gives you the elements in sorted
order.

public class MergingIterator {

public MergingIterator(int[]given1, int[] given2) {

}

public int next() {

}

public boolean hasNext() {

}

}

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!

Spring 2016 9



CS61B Guerrilla Section 6 Worksheet

6 Disjoint Trivia

(a) Explain how the disjoint sets data structure could be used in an implementation of Kruskal?s MST
algorithm. Consider efficiency. Would you actually want to use this data structure in this algorithm?
Explain.

(b) [True/False] To improve the efficiency of joins on two trees, we keep track of the height of the two trees
and always link the root of the shorter tree to the root of the taller tree.

(c) Extra - Assume we are using disjoint sets with path compression. How many calls to find() need to be
made in order for each node to be directly connected to the root node?

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!

Spring 2016 10



CS61B Guerrilla Section 6 Worksheet

7 Dynamic Programming

Consider an N×N grid whose cells contain integer values. We wish to find a shortest path from the lower-left
corner of the grid to the upper-right corner, where a path consists of a sequence of squares, each one of which
is adjacent to the preceding square in the path and either above, to the right, or diagonally above and to the
right of the preceding square. The length of the path is the sum of the integers in its squares. For example,
the shaded path shown below is shortest:

Here’s a pseudo-code function to find the length of the shortest path from row i, column j to row N , column
N , for 1 ≤ i ≤ N , 1 ≤ j ≤ N , in an N ×N grid G. G(r, c) is the value at row r, column c of G (numbering
from (0, 0) in the bottom left corner. Unfortunately, its running time of lsp is exponential.

def lsp(i, j):

if i >= N or j >= N:

return infinity

if i == N-1 and j == N-1:

return G(i, j)

else:

return G(i, j) + min(lsp(i+1, j), lsp(i, j+1), lsp(i+1, j+1))

a. Fill in the program below to compute the result in polynomial time into L[0][0]. You may assume
you have a multi-argument min function available, as in Python.

int[][] L = new int[N][N];

L[N-1][N-1] = G(N-1, N-1)

for (int c = _______; c _______; c _______) {

_______________________________________

}

for (int r = _______; r _______; r _______) {

__________ = __________________________

for (int c = _______; c _______; c _______) {

___________________________________

}

}

b. As a function of N , what is the worst-case execution time of this program?

Spring 2016 11


	Pokemon Ice Cave Puzzle
	Data Structures Potpourri
	Hashing
	Symmetric Tree
	Merging 2 Lists Iterator
	Disjoint Trivia

